Comparing Shallow and Deep Graph Models for Brain Network Analysis

Erica Choi¹ Sally Smith² Ethan Young³

¹Columbia University

²Georgia Institute of Technology

³University of California - Los Angeles

IEEE Big Data 2022

Introduction

•00000

- Analyze different approaches for classifying brain networks
 - kernelized SVM¹
 - message passing GNNs²
 - graph kernel GNNs³
- Suggest several methods to motivate further research in brain network analysis

¹Hofmann, Schölkopf, and Smola, "Kernel methods in machine learning", 2008

²Cui et al., BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks, 2022

³Feng et al., "KerGNNs: Interpretable Graph Neural Networks with Graph Kernels", 2022

Classification Task

- The standard graph classification task considers the problem of classifying graphs into two or more categories
- In this project, we perform binary classification on neuroimaging data to distinguish between negative and positive diagnoses

Datasets

- We are working with 2 datasets, one classifying HIV and the other classifying bipolar disorder
- Each dataset consists of:
 - diffusion tensor imaging (DTI) scans
 - functional magnetic resonance imaging (fMRI) scans
 - classification labels: positive diagnosis, negative diagnosis

Datasets

Preliminaries

- The DTI and fMRI brain scans of each patient i are represented as weighted adjacency matrices $\mathbf{W}_i \in \mathbb{R}^{M \times M}$
 - The fMRI scans are considered to be more robust than DTI scans, so our experiments prioritize working with them
 - The fMRI datasets have been cleaned for us and consist of 70 (HIV) and 97 (bipolar disorder) patients
- Nodes in the brain network represent regions of interest (ROIs), and edge links between nodes indicate the strength of the connection between ROIs

Threshold Rounding

Preliminaries

- We implement a rounding scheme to remove edge weights and sparsify the adjacency matrices
- We have: $A_{ij} = \begin{cases} 1 & \text{if } A_{ij} \geq \alpha \\ 0 & \text{otherwise} \end{cases}$, where A_{ij} is the ij-th entry of the adjacency matrix A and $\alpha \in [0,1]$ is our rounding threshold

Threshold Rounding

Preliminaries

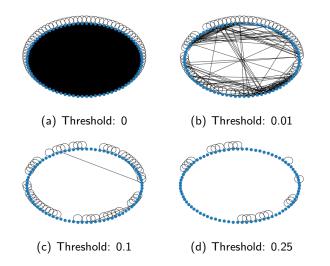


Figure 1: Effect of threshold rounding on network density.

Graph Kernels

- Popular in graph-based learning because they can be computed implicitly (inner product)
- We compute graph kernel matrices using the *GraKel* Python package and plug them into SVM to perform classification
- Consider WL, WLOA, shortest path, and graphlet sampling kernels in experiments

Graph Kernels

- Weisfeiler-Lehman subtree kernel is built on the Weisfeiler-Lehman graph isomorphism test⁴ and is essentially a relabeling procedure
 - Computationally inexpensive, taking O(hm) time, where h is the number of iterations and m is the number of edges.
- WL optimal assignment kernel uses valid assignment theory to improve the performance of the WL subtree kernel⁵
 - Computed in linear time, taking O(|X| + |Y|) time, where X and Y are elements of $[\mathcal{X}]^n$. $[\mathcal{X}]^n$ denotes the set of all *n*-element subsets of the set \mathcal{X} .

⁴Weisfeiler and Lehman, "The reduction of a graph to canonical form and the algebra which appears therein", 1968

⁵Kriege, Giscard, and Wilson, "On Valid Optimal Assignment Kernels and Applications to Graph Classification", 2016

Graph Kernels

0000

- **Shortest path** kernel decomposes graphs into shortest paths and compares pairs of them⁶
 - Computationally expensive when number of n nodes is large, taking $O(n^4)$ time
- **Graphlet sampling** kernel decomposes graphs into graphlets of k nodes and compares the number of matching graphlets between two graphs⁷
 - Computationally intractable for large k, taking $O(n^k)$ time
 - Experiments show k=5 generally performs the best

⁶Borgwardt and Kriegel, "Shortest-path kernels on graphs", 2005

⁷Przulj, "Biological network comparison using graphlet degree distribution", 2007

Support Vector Machines

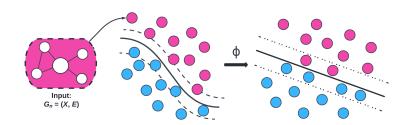


Figure 2: Overview of kernel SVM.

Graph Neural Networks

- GNNs combine node features and graph structures to perform prediction tasks
- General framework:
 - computing the representation of each node
 - applying a pooling strategy to obtain the graph representation
 - multilayer perceptron (MLP) can be applied to make predictions

- We implement MPGNNs using the BrainGB Python package and focus on two types of MPGNNs:
 - Graph attention network (GAT) is a type of convolutional neural network that operates on graphs
 - Graph convolutional network (GCN) is a special case of GATs with attention fully determined by graph structure alone, without node features
- Conduct experiments using settings based on extensive studies from Cui et al (2022)

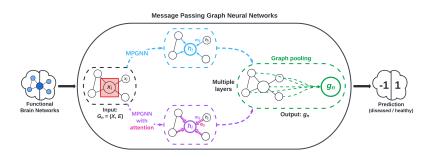


Figure 3: BrainGB framework. Adapted from Fig. 1 in Cui et al (2022). The node representation of node x_i is h_i , the message from node x_j to x_i is m_{ij} , and the attention weight from node x_j to x_i is a_{ij} .

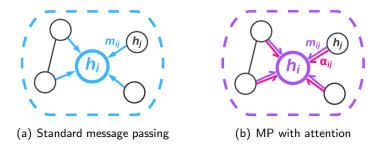


Figure 4: The message passing schemes in the BrainGB framework.

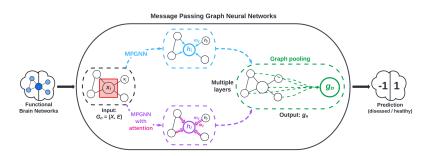


Figure 5: BrainGB framework. Adapted from Fig. 1 in Cui et al (2022). The output g_n is the pooled information that will be passed through a MLP to make the prediction.

Kernel GNNs

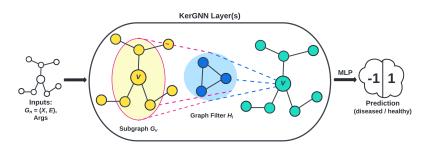


Figure 6: KerGNN framework. Adapted from Fig. 3 in Feng et al (2022).

Kernel GNNs

Number of epochs	100; 150; 200; 250; 300; 350; 400; 450; 500	
Learning rate	10^{-2} ; 10^{-3} ; 10^{-4} ; 10^{-5} ; 10^{-6}	
Dropout rate	0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9	
Nodes in graph filter	2; 4; 6; 8; 10; 12; 14; 16; 18; 20	
Subgraph size	5; 10; 15; 20	
k-hop neighborhood	1; 2; 3	
Max step of RW	1; 2; 3; 4; 5	

Table 1: Hyperparameter Search Range

Data	Method	Accuracy	F1	AUC
HIV	WL-0.21	$0.67_{\pm 0.17}$	_	_
	WLOA-0.21	$0.65_{\pm 0.17}$		_
	SP-0.01	$0.66_{\pm 0.20}$		_
	GS-0.03	$0.66_{\pm0.18}$		
	GCN-concat	$0.64_{\pm 0.15}$	$0.59_{\pm 0.20}$	$0.77_{\pm 0.20}$
	GAT-concat	$0.73_{\pm 0.16}$	$0.71_{\pm 0.17}$	$0.81_{\pm 0.19}$
	GCN-edge concat	$0.71_{\pm 0.11}$	$0.69_{\pm 0.12}$	$0.77_{\pm 0.17}$
	GAT-edge concat	$0.69_{\pm 0.18}$	$0.67_{\pm 0.19}$	$0.73_{\pm 0.24}$
	KerGNN	$0.64_{\pm 0.19}$	_	_
ВР	WL-0.4	$0.63_{\pm 0.19}$		_
	WLOA-0.42	$0.66_{\pm0.12}$		_
	SP-0.02	$0.64_{\pm0.12}$		_
	GS-0.04	$0.62_{\pm 0.15}$		
	GCN-concat	$0.53_{\pm 0.13}$	$0.51_{\pm 0.14}$	$0.54_{\pm 0.16}$
	GAT-concat	$0.53_{\pm 0.13}$	$0.50_{\pm 0.13}$	$0.57_{\pm 0.19}$
	GCN-edge concat	$0.63_{\pm 0.12}$	$0.61_{\pm 0.13}$	$0.61_{\pm 0.17}$
	GAT-edge concat	$0.52_{\pm 0.17}$	$0.51_{\pm 0.16}$	$0.59_{\pm 0.19}$
	KerGNN	$0.68_{\pm 0.16}$	_	_

Discussion

- Limited data (70 and 97 patients in each dataset)
- GNNs are usually shallow; deep GNNs are still an active area of research
- For brain networks, what kinds of graph structures are effective beyond the pairwise connections are still unknown

Discussion

Preliminaries

- Cui et al (2021)⁸ notes HIV affects 2 sub-networks, while bipolar disorder only affects 1 sub-network
 - This may make accurate classification difficult
- Li et al (2020)⁹ found utilizing multimodal neuroimaging (fMRI and MRI) improves SVM classification performance

⁸Cui et al., "BrainNNExplainer: an interpretable graph neural network framework for brain network based disease analysis", 2021

⁹Li et al., "Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques", 2020

Future Work

- There are many graph kernels and GNNs that we hope are useful in the area of brain network analysis
- Some of these include: graph kernel neural networks¹⁰ (GKNN), graph stochastic attention¹¹ (GSAT), *k*-dimensional GNNs¹² (*k*-GNN), message passing graph kernels¹³ (MPGK), and motif convolutional networks¹⁴ (MCN)

¹⁰Cosmo et al., Graph Kernel Neural Networks, 2021

¹¹Miao, Liu, and Li, *Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism*, 2022

¹²Morris et al., Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, 2018

¹³Nikolentzos and Vazirgiannis, *Message Passing Graph Kernels*, 2018
¹⁴Lee et al., *Higher-order Graph Convolutional Networks*, 2018

Acknowledgements & Contact Info

- The authors thank Dr. Carl Yang, Ms. Hejie Cui and Mr. Dai Wei for their mentorship and technical assistance
- This work was financially supported in part by the US NSF awards DMS-2051019 and DMS-1751636; this work was also partially supported by the internal funds and GPU servers provided by the Department of Computer Science of Emory University
- If you have any questions or would like to discuss further, feel free to contact us
 - Erica Choi erica.c@columbia.edu
 - Sally Smith sallysmith@gatech.edu
 - Ethan Young young.j.ethan@gmail.com

References I

- Borgwardt, Karsten M. and Hans-Peter Kriegel. "Shortest-path kernels on graphs". In: Fifth IEEE International Conference on Data Mining. 2005, pp. 74–81.
- Cosmo, Luca et al. Graph Kernel Neural Networks. 2021. DOI: 10.48550/ARXIV.2112.07436. URL: https://arxiv.org/abs/2112.07436.
- Cui, Hejie et al. BrainGB: A Benchmark for Brain Network Analysis with Graph Neural Networks. 2022. DOI: 10.48550/ARXIV.2204.07054. URL: https://arxiv.org/abs/2204.07054.
- Cui, Hejie et al. "BrainNNExplainer: an interpretable graph neural network framework for brain network based disease analysis". In: *ICML-IMLH*. 2021.
- Feng, Aosong et al. "KerGNNs: Interpretable Graph Neural Networks with Graph Kernels". In: AAAI. 2022.

References II

- Hofmann, Thomas, Bernhard Schölkopf, and Alexander J Smola. "Kernel methods in machine learning". In: *The annals of statistics* 36.3 (2008), pp. 1171–1220.
- Kriege, Nils, P.-L Giscard, and Richard Wilson. "On Valid Optimal Assignment Kernels and Applications to Graph Classification". In: *NeurIPS*. 2016, pp. 1615–1623.
- Lee, John Boaz et al. Higher-order Graph Convolutional Networks. 2018. DOI: 10.48550/ARXIV.1809.07697. URL: https://arxiv.org/abs/1809.07697.
- Li, Hao et al. "Identification of bipolar disorder using a combination of multimodality magnetic resonance imaging and machine learning techniques". In: BMC Psychiatry. 2020.

References III

Preliminaries

- Miao, Siqi, Miaoyuan Liu, and Pan Li. Interpretable and Generalizable Graph Learning via Stochastic Attention Mechanism. 2022. DOI: 10.48550/ARXIV.2201.12987. URL: https://arxiv.org/abs/2201.12987.
- Morris, Christopher et al. Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks. 2018. DOI: 10.48550/ARXIV.1810.02244. URL: https://arxiv.org/abs/1810.02244.
- Nikolentzos, Giannis and Michalis Vazirgiannis. Message Passing Graph Kernels. 2018. DOI:

10.48550/ARXIV.1808.02510. URL: https://arxiv.org/abs/1808.02510.

Przulj, Natasa. "Biological network comparison using graphlet degree distribution". In: *Bioinformatics* 23.2 (2007), pp. 177–183.

References IV

Weisfeiler, Boris and A.A. Lehman. "The reduction of a graph to canonical form and the algebra which appears therein". In: NTI 9 (1968), pp. 12–16.